Why a data strategy underpins a successful AI strategy

AI and machine learning offer exciting innovation capabilities for businesses, from next-level predictive analytics to human-like conversational interfaces for functions such as customer service. But despite these tools’ undeniable potential – Deloitte research indicates that 74% of firms are already testing AI technologies – many enterprises today are unprepared to fully leverage AI’s capabilities because they lack a prioritised data strategy.  

While unstructured data typically makes up over 80% of a company’s data landscape, a lot of organisations’ potentially game-changing data remains siloed, unstructured, underutilised, and harder to find over time – it is, in the words of analysts Gartner, “dark data.”   

For example, oil and gas firms can drive greater efficiencies in upstream activities by consolidating and better analysing disparate seismic data sources; manufacturers achieve leaner processes by improving the accessibility of design files, inventory, and quality data; and media companies transform their content options by getting a single view of graphics, video, images and post-production files.  

Bringing siloed and far-flung unstructured data repositories into a single, accessible source is one of the enterprise inhibitors of being able to utilise AI effectively – Mulesoft and Deloitte Digital research indicates 81% of companies assessed believe it is holding their company back. By consolidating data, organisations of all types can achieve crucial operational and competitive benefits including:  

– Making “dark data” visible for analytics and AI tools 

– Gaining a single source of truth from unstructured data  

– Improving decision-making by reducing information blind spots  

– Enabling organisation-wide collaborations, insights and efficiencies 

– Simplifying regulatory compliance  

– Decreased management costs by retiring legacy file systems. 

Leading hybrid cloud platform providers have identified a set of four key actions – a framework to make them ‘Fit for AI’ – that helps organisations to consolidate their file data arrangements and thus deliver the enterprise intelligence needed for the AI age.  

Let’s explore what these steps comprise:  

1) Assessing file data silos for business value and risks

An expert technology partner can help an organisation implement a data assessment in addition to assessing the business value and risks of consolidating file silos, in terms of capital costs (cost of consolidation compared to keeping its current arrangements); operational costs (IT time/resources needed for a unified data, set against current costs); business productivity and revenue (assessing workforce constraints and negative impacts on revenues if siloed data isn’t unified); and business continuity (assessing the relative risks of consolidated business continuity or retaining existing file infrastructures). 

This approach enables CIOs to fully understand their file data storage environment, allowing them to assess migration risks, and plan the data migration process. 

2) Rationalising file storage

Expert partners can also help organisations identify the best path to data consolidation. This approach will build an architecture that not only provides full unstructured file data visibility but also the single source of truth required for successfully adopting AI services which ultimately underpins an organisation’s evolving business processes.  

3) Securing and protecting consolidated data.

As malicious attacks such as ransomware exploits become more sophisticated, CIOs also need to re-evaluate security in the context of AI applications accessing unified data sets to ensure multi-layered protection around their data assets. Today’s hybrid cloud platforms incorporate a full complement of ransomware protection services. Using such tools, detection starts at the network edge, notifying IT teams of suspicious file patterns, malicious file extensions, and any anomalous behaviour across the organisation. Mitigation policies reduce business impacts before an attack can spread. Point-in-time recovery is as important as mitigation. It ensures any impacted files can be rapidly recovered, and AI-automated business processes that rely upon the underlying data quickly brought back online, while SIEM integration, audit logs and incident reports keep comprehensive records of threat events. 

4) Curating data for AI use

An effective AI strategy requires consolidated, well-governed data foundations. By leveraging specialised data intelligence tools, organisations can refine data sets utilised by AI resulting in more qualitative interaction. As the adage goes, ‘garbage in, garbage out’! 

Integrated dashboards provided by today’s hybrid cloud storage tools are able to quantify storage consumption down to department or file type level and can help earmark infrequently accessed data for future archival. 

Modern AI-ready search tools help simplify data curation with powerful indexing, and efficient structuring of content for actionable insights and can provide further validation of the curated dataset to guarantee quality and usability for downstream applications.  

Today’s data management tools integrate fully with organisations’ existing identity management systems. This helps IT teams highlight group permissions and access control lists, to build effective company-wide security protocols as AI tools are tested and adopted.  

Effective data strategies must also accommodate new unstructured data generated and accessed at the “edge” daily. When data is consolidated from the edge to the core, AI algorithms can build predictive models based on comprehensive data profiles while receiving real-time edge data and historical context from the unified repository. This enables more accurate real-time insights and operational decision-making. 

‘Fit for AI’

A ‘Fit for AI’ framework can underpin a digital management strategy that enables organisations to prepare their dispersed and unstructured file data for AI use cases. Not only this, but it also ensures that risks are contained and that data is secure for AI implementations. As data levels grow exponentially and AI tools proliferate, effective data management is an enabler for AI success that delivers new insights from consolidated corporate data that can transform companies’ processes and their ability to compete.  

Jim Liddle

Jim is Chief Innovation Officer Data Intelligence and AI at Nasuni. A seasoned entrepreneur and executive leader, Jim has 25+ years’ experience and is an expert in big data and AI innovation.

Choose an AI solution to transform beyond technology

Kit Cox • 09th December 2024

The first step is knowing exactly what your business wants to achieve with AI; think faster, smarter and more efficient. Once you know what you are working towards, you can start looking for a solution that can help you make it a reality. AI integration can feel like a daunting task at the beginning, so...

A Roadmap to Security and Privacy Compliance

John Lynch Director of Kiteworks • 04th December 2024

Only by understanding the current regulatory environment and implementing robust data protection measures, can organisations enhance their security posture, ensure compliance, and build resilience against the latest cyber threats. This article provides a comprehensive roadmap of how to do it.

Data-Sharing Done Right: Finding the Best Business Approach

Bart Koek • 20th November 2024

To ensure data is not only available, but also accessible to those that need it, businesses recognise that it is vital to focus on collecting, sorting and governing all the data in their organisation. But what happens when data also needs to be accessed and shared across the business? That is where organisations discover a...

Nova: The Ultimate AI-Powered Martech Solution for Boosting Sales, Marketing...

Erin Lanahan • 19th November 2024

Discover how Nova, the AI-powered engine behind Launched, revolutionises Martech by automating sales and marketing tasks, enhancing personalisation, and delivering unmatched ROI. With advanced intent data integration, revenue attribution, and real-time insights, Nova empowers businesses to scale, streamline operations, and outperform competitors like 6Sense and 11x.ai. Experience the future of Martech with Nova’s transformative AI...

How E-commerce Marketers Can Win Black Friday

Sue Azari • 11th November 2024

As new global eCommerce players expand their influence across both European and US markets, traditional brands are navigating a rapidly shifting landscape. These fast-growing Asian platforms have gained traction by offering ultra-low prices, rapid product turnarounds, heavy investment in paid user acquisition, and leveraging viral social media trends to create demand almost in real-time. This...

Why microgrids are big news

Craig Tropea • 31st October 2024

As the world continues its march towards a greener future, businesses, communities, and individuals alike are all increasingly turning towards renewable energy sources to power their operations. What is most interesting, though, is how many of them are taking the pro-active position of researching, selecting, and implementing their preferred solutions without the assistance of traditional...

Is automation the silver bullet for customer retention?

Carter Busse • 22nd October 2024

CX innovation has accelerated rapidly since 2020, as business and consumer expectations evolved dramatically during the Covid-19 pandemic. Now, finding the best way to engage and respond to customers has become a top business priority and a key business challenge. Not only do customers expect the highest standard, but companies are prioritising superb CX to...