AI in Healthcare: Applying the Automation Spectrum to Business

An image of Ai, AI, AI in Healthcare: Applying the Automation Spectrum to Business

In our latest contribution Vinay Ramani, CPO of Pipedrive, discusses precision within AI in healthcare.

With Google’s AI system recently demonstrating that it can accurately diagnose 26 skin conditions to the same accuracy as US board-certified dermatologists, there is an increasing buzz around the potential of AI in automation. The capabilities demonstrated by this AI were published in a paper titled ‘A Deep Learning System for Differential Diagnosis of Skin Disease’ and was received with wide acclaim. Despite this, the British Skin Foundation, and their American counterpart, list common skin diseases numbering closer to 70. What this means is that Google’s AI system, while impressive, is only capable of detecting 37 per cent of common skin conditions. As such, we may be tempted to ask what is stopping it from detecting all skin conditions?

A good place to start is looking into precision and recall. By precision, we are referring to how accurately a machine can make a prediction for a particular question. Precision is not something that machines can achieve immediately or from the moment they are powered on; it requires significant training through exposure to vast amounts of data. Only through this process can AI begin to approach the levels of accuracy we might expect of a human and this is for only one specific use case. It becomes increasingly challenging to develop AI as the number of use cases they need to satisfy increases. To demonstrate this via example, let’s look at Google’s AI and it’s precision. While it is “on par” with a US board-certified dermatologist, this AI is only valuable in this one specific use case. By contrast, your average dermatologist can likely perform a number of other tasks with great accuracy. To develop an AI that could entirely perform their role, at the moment, is too technologically-challenging. That being said, as the number of use cases increases the recall of an AI increases as it has more experience from which to make predictions and evaluate.

READ MORE: NHS establishes AI lab to improve healthcare

With these two different criteria in mind, we can now begin to look at the ‘automation continuum’. Automation is the use of technology to enable a machine, process, or system to perform activities more quickly, with greater accuracy, and without biases compared to human workers. In basic examples, automation is simply a machine following predetermined rules to complete simple and repeatable tasks. For instance, robots using workflow software to machine, weld, paint, and assemble parts in certain manufacturing environments.

On the other end of the spectrum where we have more advanced examples, automation can enable machines to simulate human behaviour in a variety of ways. Often in these more advanced use cases, the automation can improve as the underlying AI learns and adapts without the necessity for human intervention. We can see this in cashiering at fast-food restaurants and automated tellers helping a customer open a bank account. That being said, even more advanced examples are now also capable of performing less predictable or higher-skilled tasks that augment and extend human capabilities. This allows for routine administrative tasks to be offloaded from workers and free up their time for value-on activities. This is going to play a pivotal role in industries such as accountancy, law or finance where repetitive and time-consuming tasks are a hindrance to other activities.

For these more advanced use cases, artificial intelligence is a key driver. AI and machine learning are the technologies underpinning these capabilities and performing tasks once considered exclusive to human beings. This is due to the fact that AI has the capacity to understand and interact using human speech, interpret and match images, recognise patterns in data, make recommendations, predict outcomes, and independently learn from experience. Moreover, by combining information from a variety of inputs these AI-based systems can self-adjust based on previous successes and failures.

In summary, deciding which end of the automation spectrum is the most suitable for your business use-case depends on two factors. Firstly, what inputs you have available to input into the AI and, secondly, what your needed output is. On the basic end, where the desired output is simple and there are restricted inputs – basic automation is the best choice. For more complex outputs, however, strong-AI integrations are necessary. As such, if you’re thinking about introducing automation or AI into the workplace, make sure you carefully consider what’s going to achieve the best outcome for your business.

An image of Ai, AI, AI in Healthcare: Applying the Automation Spectrum to Business

Vinay Ramani

CPO at Pipedrive. Helping Pipedrive realize its true potential of helping SMBs grow with efficient and powerful tools for salespeople.

Hacking Cyber Security’s battle for workers

Andrew Marsh • 30th September 2022

Cyber attacks are increasing exponentially, cyber professionals are quitting, and ultimately, no one is replacing them. Worldwide, the cyber workforce shortfall is approximately 3.5 million people. We have a mountain to climb. While there are rising numbers of people with security degrees and qualifications, this falls way short of industry demand.

Getac becomes British Touring Car Championship official technology partner

Chris Gibbs • 29th September 2022

In competitive motorsports, the smallest detail can be the difference between winning and losing. Getac is the official technology partner to the British Touring Car Championships (BTCC) helping it achieve its digital transformation goals, putting a wealth of information at the fingertips of both race officials and teams alike, and helping deliver incredibly exciting racing.

The Time is Now for Digital Transformation

Paul Waddilove • 29th September 2022

According to a McKinsey research report, 70% of enterprises that had taken on digital transformation reported in 2020 that their momentum had stalled. It is worth understanding the reasons–culture or scale for example–causing the slowdown as the payoffs from digital transformation can be impressive. It can lead to more efficient operations, with enterprises enjoying autonomy...

Addressing the environmental impact of the data centre

David Watkins • 29th September 2022

David Watkins, solutions director at VIRTUS Data Centres , share how you may have seen the recent news that Thames Water has launched a probe into the impact of data centres on water supplies in and around London, as it imposed a hosepipe ban on its 15 million customers in a drought-hit area. Ensuring that...

How Can Businesses Ensure Efficient Management of COSU Devices

Nadav Avni • 29th September 2022

Nadav Avni, Chief Marketing Officer at Radix Technologies, shares how when it comes to speeding up queues and providing instant information, nothing beats corporate-owned, single-use (COSU) devices. When put in kiosk mode, these devices become efficient digital assistants that collect and share information.

The Cloud – Debunking the Myth

Guy Parry Williams • 26th September 2022

Mid-sized businesses are head down, wrestling with constantly evolving operational challenges, from skills shortages to supply chain delays and raging inflation. Management teams lack the time and often confidence to explore technology innovation and, as a result, too many companies are missing vital opportunities to cut costs, boost efficiency and reach new customers.