Keeping AI cost effective in the move to cloud

Can Artificial Intelligence Deliver Real Value Today?

AI is in its infancy, but the early shoots of growth hold great promise for the industry. According to the Boston Consulting Group, although 59% of organisations have developed an AI strategy, and 57% have carried out pilot projects in the area, only 11% have seen any kind of return from AI. That said, the potential is vast; some sources estimate that the size of the global AI market could increase tenfold from $15bn (2021) to $150bn by 2028, and in the UK, expenditure on AI technologies could reach £83bn by 2040, from £16.7bn in 2020. 

Whatever the application, most AI projects usually start as small, experimental tests hosted on a server in-house, and eventually graduate to cloud environments, where their uptime, security, scalability and maintenance can be assured. However, this migration – the ‘teenage’ stage of an AI application’s lifecycle, as it were – is often the most difficult and painful. 

Growing Pains

Moving an AI application to the cloud isn’t just a matter of ensuring greater scalability and improving uptime – it’s often a matter of cost. AI applications usually rely heavily on GPU and GPU-like processors, which can be a significant investment for any startup or lab. Although a single specialized card can be found at around a thousand pounds, more advanced, high-performance GPUs can be in the region of £5,000 to £15,000 each. Delivering this level of high performance at scale is often out of the question from a CapEx point of view, especially for a start-up. 

Furthermore, AI application developers eventually reach the limits of their in-house machines; AI usually needs to be trained on exceptionally large datasets, which can mean running out of RAM and storage space fairly rapidly. Upgrading to a high-performance machine in the cloud can remove this bottleneck at both the development and production stages. However, there are a number of things that teams should be aware of and prepare for if they are to make the migration to cloud as painless and productive as possible. 

When Plans Come Together

In the very early stages, research and preparation are key. For example, portability is key; working on a platform like Docker from the get-go can greatly help you before and after migration. Even before moving to a third-party datacentre, working in a containerized environment means that your coworkers and collaborators can quickly replicate the app and its dependencies and run it under exactly the same conditions as you have, allowing for robust and reliable testing. However, having an AI application running in a container also means that you’ll minimize re-configuration during the migration process as well.

From a provider point of view, it’s worthwhile understanding the credentials of cloud companies; for example, is their security regularly audited by independent bodies? Do they have specific security accreditation from the vendors they use in turn? AI applications can often handle extremely sensitive data – from simple chatbots in retail banking, to complex healthcare analytics systems, for example – so making sure that this data will be handled, stored and protected appropriately is a must. 

Similarly, sustainability is an important consideration. AI requires high computing power and the Wall Street Journal recently revealed that handling a search query via ChatGPT was seven times more compute intensive than a standard search engine. In fact, the University of Massachusetts Amherst research team found out that the GPT-2 algorithm (ChatGPT’s older sibling) created approximately 282 tons of equivalent CO2 – a similar amount to what the entire global clothing industry generated in producing polyester in 2015. AI application developers should be considering sustainability from the get-go, as well as how their partners manage recycling and electronic waste. 

At a more specific level, it’s also important to be clear about scaling. Having clear discussions with cloud providers about the specifics of app functionality, who will be using the app, and what that means for the technical architecture, can make sure that no aspect is left neglected. After all, most large-scale cloud providers can offer automatic and unlimited scaling, but there’s a lot of difference between the set-up needed for a system getting ten requests a day and one that gets ten thousand in a minute, so it’s important to be clear about instance ranges, for example. 

Similarly, latency considerations are crucial; the likes of chatbots and other real-time systems need to respond instantly to web users. Consequently, this means that both code and infrastructure must be sufficiently low-latency, and developers and deployers will need to shave off every possible milli-second. In terms of deployment, this means checking that compute resources, for example, are as close to (or in the same place as) data, which will help to keep things as fast as possible. 

Finally, once the application has been deployed, continuous monitoring is important. There may be alternative configurations within the cloud provider’s environment that could better suit its needs – or in some cases, moving to an alternative provider may be the best thing for the app. Working with open standards, in an open-source cloud environment such as OpenStack, can often make this less challenging. 

When AI Grows Up

Nobody knows if AI will ever reach the lofty – and sometimes terrifying – heights that science fiction films have promised for decades. However, if this incredibly promising and powerful technology is to reach its full potential, especially in the face of the current energy crisis, it needs to be deployed as efficiently and effectively as possible and allow its creators to focus on their core work, building AI systems, rather than worrying about infrastructure and operational concerns. 

If AI developers can plan carefully, choose their partners well, and streamline their processes when they move applications from their on-premise training-wheels environment to the bigger, wider and more flexible world of cloud, then they will considerably increase their chances of successful re-deployments, keeping costs down and end-users happy. And although that’s not the same as building WALL-E, a T-1000 or Chappie, it’s a step in the right direction.  

Alexis Gendronneau

Head of Data Products at OVHcloud

Data-Sharing Done Right: Finding the Best Business Approach

Bart Koek • 20th November 2024

To ensure data is not only available, but also accessible to those that need it, businesses recognise that it is vital to focus on collecting, sorting and governing all the data in their organisation. But what happens when data also needs to be accessed and shared across the business? That is where organisations discover a...

Nova: The Ultimate AI-Powered Martech Solution for Boosting Sales, Marketing...

Erin Lanahan • 19th November 2024

Discover how Nova, the AI-powered engine behind Launched, revolutionises Martech by automating sales and marketing tasks, enhancing personalisation, and delivering unmatched ROI. With advanced intent data integration, revenue attribution, and real-time insights, Nova empowers businesses to scale, streamline operations, and outperform competitors like 6Sense and 11x.ai. Experience the future of Martech with Nova’s transformative AI...

How E-commerce Marketers Can Win Black Friday

Sue Azari • 11th November 2024

As new global eCommerce players expand their influence across both European and US markets, traditional brands are navigating a rapidly shifting landscape. These fast-growing Asian platforms have gained traction by offering ultra-low prices, rapid product turnarounds, heavy investment in paid user acquisition, and leveraging viral social media trends to create demand almost in real-time. This...

Why microgrids are big news

Craig Tropea • 31st October 2024

As the world continues its march towards a greener future, businesses, communities, and individuals alike are all increasingly turning towards renewable energy sources to power their operations. What is most interesting, though, is how many of them are taking the pro-active position of researching, selecting, and implementing their preferred solutions without the assistance of traditional...

Is automation the silver bullet for customer retention?

Carter Busse • 22nd October 2024

CX innovation has accelerated rapidly since 2020, as business and consumer expectations evolved dramatically during the Covid-19 pandemic. Now, finding the best way to engage and respond to customers has become a top business priority and a key business challenge. Not only do customers expect the highest standard, but companies are prioritising superb CX to...

Automated Testing Tools and Their Impact on Software Quality

Natalia Yanchii • 09th October 2024

Test automation refers to using specialized software tools and frameworks to automate the execution of test cases, thereby reducing the time and effort required for manual testing. This approach ensures that automation tests run quickly and consistently, allowing development teams to identify and resolve defects more effectively. Test automation provides greater accuracy by eliminating human...