New methods of tackling Buy Now Pay Later (BNPL) fraudsters

New methods of tackling Buy Now Pay Later (BNPL) fraudsters
Martin Rehak, CEO of Resistant AI, discusses the new ways in which organizations can combat Buy Now Pay Later (BNPL) fraud.

Fraudsters are finding faster and more sophisticated ways of taking advantage of the increasingly popular Buy Now Pay Later (BNPL) services. While digital consumers enjoy the benefits of buying items they can’t necessarily afford immediately – from gift vouchers to mortgages – criminals are quick to find loopholes in this relatively straightforward process of instantly obtaining free credit online.

A surge in account takeovers

In 2020, we saw a reported 200% increase in account takeovers in digital commerce. In February 2021, the Compilation of Many Breaches (COMB) data breach exposed 3.2 billion users. Cybercriminals posted the victims’ accounts to a searchable online database that hackers and fraudsters could pay a small fee to access and create synthetic identities – where a criminal combines real and fake information to create a new identity – and commit first-party fraud for financial gain.

Account takeover can be particularly costly, especially when it involves established and reputable customers. Customer history and good reputation with a merchant is valuable, yet it can get stolen and misused. In the BNPL model, customers can secure approval in seconds and receive purchases having paid either nothing or a minimal amount upfront, a fraudster’s dream. These threats can result in additional measures to combat identity fraud, making the onboarding process cumbersome for the customer. What’s more, victims of identity theft can suffer from poor credit scores and identity validation issues, all of which needs to be avoided.

The BNPL provider’s conflict

A major conflict for BNPL providers lies in the balance of providing fast, simple service with a ‘soft’ credit check on consumers, versus protecting customer identities from criminals.

A further struggle is their reliance on top-drawer data by third parties as BNPL providers become dependent on multiple external data sources and services to validate their internal identification processes. And the more advanced the scoring, the greater their dependency on third parties. This exposes a gap for cybercriminals to fill.

Typical BNPL fraudster tactics

The BNPL fraudster will usually exploit:

  • misconfigurations in the online merchant’s CRM
  • vulnerabilities in the BNPL scoring code
  • dormant, rarely used accounts to access long-forgotten passwords.

With each information leak of names, addresses, phone numbers and emails, there is one crime, in particular, that is really taking off. Attackers use synthetic identities to apply for finance and then order items that they ‘accidentally’ arrange to be delivered to an innocent victim’s home. The criminals then collect the package, leaving the unsuspecting victim with the bill.

The technical challenge for BNPLs

BNPL organizations need to challenge the increasing sophistication of cybercriminals with their own high-level tools to mitigate risk and counter known and unknown fraud attempts. Specifically, so they can improve their credit-scoring algorithms and protect fraud detection layers against manipulation and third-party gaps.

How can they do this?

A new breed of adaptive AI financial automation add-on

BNPL organizations can add a protective layer to their existing fraud detection systems. Today’s new financial automation oversight engines combine AI with advanced statistical and machine learning techniques to monitor underlying systems, expose fraudulent transaction patterns and improve the effectiveness of risk-based decision systems. They also continuously adapt to new fraud patterns so BNPL businesses can establish more robust controls across multiple platforms.

The new financial automation oversight engines can help in three critical areas:

1. Multiple algorithms combine to detect weak patterns to flag fraud

They find inconsistencies and high-dimensional correlations in data, and flag them for further investigation. This enables the BNPL organization to detect advanced fraud and manipulation earlier and faster. The ‘accidental’ delivery of packages mentioned earlier is less likely to happen. For example, the system will alert if an IP address cluster in Nottingham is being used to order products to multiple addresses in Bristol.

2.They identify previously unidentified vulnerabilities and third-party gaps

The new breed of automation engine will flag multiple types of misclassification. For example, it will create an alert if a gift voucher purchase, usually associated with low-risk items such as chocolates and soaps, is suddenly being used for high-risk electronic items. A high-level criminal could be planning to buy electronics elsewhere or sell the vouchers on eBay.

3.They can identify multiple transactions that don’t include a physical item

This suspicious activity will also flag a misclassification to the BNPL organization.

Happier customers, happier BNPL organizations

The result is good news for customers, who are less likely to become victims of fraud or bothered by unnecessary flags – which is an equally big plus for BNPL organizations since 40% of consumers say they won’t shop again with a merchant who falsely rejects their order.

READ MORE: 

It also improves the working lives of BNPL analysts, while BNPL organizations can sign up new customers quickly and confidently – customers who will have a trusted experience, boosting brand reputation and building a loyal customer base. 

For more news from Top Business Tech, don’t forget to subscribe to our daily bulletin!

Follow us on LinkedIn and Twitter

Amber Donovan-Stevens

Amber is a Content Editor at Top Business Tech

Tech and Business Outlook: US Confident, European Sentiment Mixed

Viva Technology • 11th February 2025

The VivaTech Confidence Barometer, now in its second edition, reveals strong confidence among tech executives regarding the impact of emerging technologies on business competitiveness, particularly AI, which is expected to have the most significant impact in the near future. Surveying tech leaders from Europe and North America, 81% recognize their companies as competitive internationally, with...

How smart labels are transforming supply chains

Sharath Muddaiah • 27th January 2025

As e-commerce continues to rise globally, the impact of just-in-time manufacturing and rising consumer expectations mean the need for real-time visibility has never been greater. Smart labels directly address this demand, offering solutions to long-standing challenges like shipment delays, theft, and the lack of traceability. With the smart label market projected to grow from $14.1...

The rise of loyalty apps

Sue Azari • 17th January 2025

Increased choice and a consumer more price sensitive than ever before, has made customers far more likely to shop around for the best deals. Price is now the number one factor in brand consideration. In an effort to bag a bargain, loyalty programs have become increasingly popular with consumers, with nine out of ten in...

Rocket launch challenges Elon Musk’s space dominance

Professor Sultan Mahmud • 16th January 2025

Amazon founder Jeff Bezos’s space company has blasted its first rocket into orbit in a bid to challenge the dominance of Elon Musk’s SpaceX. The New Glenn rocket launched from Cape Canaveral Space Force Station in Florida at 02:02 local time (07:02 GMT). It firmly pits the world’s two richest men against each other in...

Giesecke+Devrient launches new Smart Label at CES 2025

Giesecke Devrient • 06th January 2025

G+D has today launched the G+D Smart Label, its innovative tracking solution that transforms any package into an IoT device. Ultra-thin and only slightly larger than a credit card, the new Smart Label proposition has been jointly developed by G+D in conjunction with its hardware partner, Sensos to enable cost-effective, accurate location tracking for a...

Choose an AI solution to transform beyond technology

Kit Cox • 09th December 2024

The first step is knowing exactly what your business wants to achieve with AI; think faster, smarter and more efficient. Once you know what you are working towards, you can start looking for a solution that can help you make it a reality. AI integration can feel like a daunting task at the beginning, so...

A Roadmap to Security and Privacy Compliance

John Lynch Director of Kiteworks • 04th December 2024

Only by understanding the current regulatory environment and implementing robust data protection measures, can organisations enhance their security posture, ensure compliance, and build resilience against the latest cyber threats. This article provides a comprehensive roadmap of how to do it.