Harvard designs ‘RoboBee’ that can dive into water

Harvard designs ‘RoboBee’ that can dive into water

At 2cm tall and 175mg in weight – that’s a fifteenth the weight of 1p coin – Robobees are now 1,000 times lighter than any previous aerial-to-aquatic robot.

Harvard scientists have been working on robotic bees for years, first unveiling them in 2013. These tiny robots have evolved from simply flying to now sticking to walls and even diving in and out of water. So why do these Robobees matter?

Robobees are years in the making

The Robobee was first developed by mechanical engineering student Robert Wood in 1991.

Since then engineers at the Harvard School of Engineering and Applied Sciences and the Wyss Institute for Biologically-Inspired Engineering have been working on the project. The Robobee’s movements are based on larger amphibious drones capable of the same manoeuvres; the device can
stick to walls, fly, dive into the water, swim and propel out of the water.

The technology is being designed with the aim to eventually be used in search missions. Deploying Robobees to explore a situation before sending in bigger machines to rescue people could save lives: essentially their small size enables them to scope out a situation before going in with the bigger rescue missions.

Other potential uses are surveillance, high-res weather and environment monitoring and crop pollination. The ability to go in and out of water is then is a great accomplishment, as it can help in underwater searches. For a robot so tiny to be able to break through the surface tension of water is a huge achievement.

What’s the technology behind a Robobee?

The bee is kitted with what could be called a miniature combustible jet. It uses buoyancy chambers – or floaties – to swim to the surface, and a plate inside the chambers converting the water into oxyhydrogen.


For a robot so tiny to be able to break through the surface tension of water is a huge achievement.


Once the wings are above water the oxyhydrogen is combustible, and once ignited rocket the RoboBee into the air. The force of breaking surface tension has been described by Robert Wood, Charles River Professor of Engineering and Applied Sciences, as feeling “like an impenetrable wall” and the robot swimming as feeling “like it is surrounded by molasses”.

The surface tension is more than ten times the weight of the RoboBee, and three times its maximum lift. After creating a robot bee that swims in 2016, completing the challenge to find a way for the bee to then break its way back out of the water is a huge step towards a RoboBee that is controlled remotely for its potential uses.

Harvard is also working on patenting the RoboBees commercial opportunities – one day you may even be able to acquire your own little robot bee.

Bekki Barnes

With 5 years’ experience in marketing, Bekki has knowledge in both B2B and B2C marketing. Bekki has worked with a wide range of brands, including local and national organisations.

Is automation the silver bullet for customer retention?

Carter Busse • 22nd October 2024

CX innovation has accelerated rapidly since 2020, as business and consumer expectations evolved dramatically during the Covid-19 pandemic. Now, finding the best way to engage and respond to customers has become a top business priority and a key business challenge. Not only do customers expect the highest standard, but companies are prioritising superb CX to...

Automated Testing Tools and Their Impact on Software Quality

Natalia Yanchii • 09th October 2024

Test automation refers to using specialized software tools and frameworks to automate the execution of test cases, thereby reducing the time and effort required for manual testing. This approach ensures that automation tests run quickly and consistently, allowing development teams to identify and resolve defects more effectively. Test automation provides greater accuracy by eliminating human...

Custom Software Development

Natalia Yanchii • 04th October 2024

There is a wide performance gap between industry-leading companies and other market players. What helps these top businesses outperform their competitors? McKinsey & Company researchers are confident that these are digital technologies and custom software solutions. Nearly 70% of the top performers develop their proprietary products to differentiate themselves from competitors and drive growth. As...

The Impact of Test Automation on Software Quality

Natalia Yanchii • 04th October 2024

Software systems have become highly complex now, with multiple interconnected components, diverse user interfaces, and business logic. To ensure quality, QA engineers thoroughly test these systems through either automated or manual testing. At Testlum, we met many software development teams who were pressured to deliver new features and updates at a faster pace. The manual...

Custom Software Development

Natalia Yanchii • 03rd October 2024

There is a wide performance gap between industry-leading companies and other market players. What helps these top businesses outperform their competitors? McKinsey & Company researchers are confident that these are digital technologies and custom software solutions. Nearly 70% of the top performers develop their proprietary products to differentiate themselves from competitors and drive growth. As...

The Impact of Test Automation on Software Quality

Natalia Yanchii • 03rd October 2024

Software systems have become highly complex now, with multiple interconnected components, diverse user interfaces, and business logic. To ensure quality, QA engineers thoroughly test these systems through either automated or manual testing.
The Digital Transformation Expo is coming to London on October 2-3. Register now!