Harvard designs ‘RoboBee’ that can dive into water

Harvard designs ‘RoboBee’ that can dive into water

At 2cm tall and 175mg in weight – that’s a fifteenth the weight of 1p coin – Robobees are now 1,000 times lighter than any previous aerial-to-aquatic robot.

Harvard scientists have been working on robotic bees for years, first unveiling them in 2013. These tiny robots have evolved from simply flying to now sticking to walls and even diving in and out of water. So why do these Robobees matter?

Robobees are years in the making

The Robobee was first developed by mechanical engineering student Robert Wood in 1991.

Since then engineers at the Harvard School of Engineering and Applied Sciences and the Wyss Institute for Biologically-Inspired Engineering have been working on the project. The Robobee’s movements are based on larger amphibious drones capable of the same manoeuvres; the device can
stick to walls, fly, dive into the water, swim and propel out of the water.

The technology is being designed with the aim to eventually be used in search missions. Deploying Robobees to explore a situation before sending in bigger machines to rescue people could save lives: essentially their small size enables them to scope out a situation before going in with the bigger rescue missions.

Other potential uses are surveillance, high-res weather and environment monitoring and crop pollination. The ability to go in and out of water is then is a great accomplishment, as it can help in underwater searches. For a robot so tiny to be able to break through the surface tension of water is a huge achievement.

What’s the technology behind a Robobee?

The bee is kitted with what could be called a miniature combustible jet. It uses buoyancy chambers – or floaties – to swim to the surface, and a plate inside the chambers converting the water into oxyhydrogen.


For a robot so tiny to be able to break through the surface tension of water is a huge achievement.


Once the wings are above water the oxyhydrogen is combustible, and once ignited rocket the RoboBee into the air. The force of breaking surface tension has been described by Robert Wood, Charles River Professor of Engineering and Applied Sciences, as feeling “like an impenetrable wall” and the robot swimming as feeling “like it is surrounded by molasses”.

The surface tension is more than ten times the weight of the RoboBee, and three times its maximum lift. After creating a robot bee that swims in 2016, completing the challenge to find a way for the bee to then break its way back out of the water is a huge step towards a RoboBee that is controlled remotely for its potential uses.

Harvard is also working on patenting the RoboBees commercial opportunities – one day you may even be able to acquire your own little robot bee.

Bekki Barnes

With 5 years’ experience in marketing, Bekki has knowledge in both B2B and B2C marketing. Bekki has worked with a wide range of brands, including local and national organisations.

Ab Initio partners with BT Group to deliver big data

Luke Conrad • 24th October 2022

AI is becoming an increasingly important element of the digital transformation of many businesses. As well as introducing new opportunities, it also poses a number of challenges for IT teams and the data teams supporting them. Ab Initio has announced a partnership with BT Group to implement its big data management solutions on BT’s internal...

WAICF – Dive into AI visiting one of the most...

Delia Salinas • 10th March 2022

Every year Cannes held an international technological event called World Artificial Intelligence Cannes Festival, better known by its acronym WAICF. One of the most luxurious cities around the world, located on the French Riviera and host of the annual Cannes Film Festival, Midem, and Cannes Lions International Festival of Creativity. 

Bouncing back from a natural disaster with resilience

Amber Donovan-Stevens • 16th December 2021

In the last decade, we’ve seen some of the most extreme weather events since records began, all driven by our human impact on the plant. Businesses are rapidly trying to implement new green policies to do their part, but climate change has also forced businesses to adapt and redefine their disaster recovery approach. Curtis Preston,...